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Buenos Aires, 1428 Buenos Aires, Argentina 
% Departamento Fisica de Particulas, Universidad de Santiago de Composlela, Santiago 
de  Compastela, Sp'ain 

Received 29 October 1990 

Abstract. The solutions of the generalized Fokker-Planck equation that arises in the 
semiclassical description of a quantal harmonic coordinate immersed in an arbitrary heat 
bath are investigated in the non-Markovian regime. Our treatment consists of retaining a 
finite number of terms ofthe analytic expansion of the Laplace-transformed memory kemel 
around the origin which leads to approximate relaxation frequencies involving different 
degrees of memory. For a regime of highly inelastic collisions we extend previous findings 
concerning the relation between Markovian and non-Markovian relaxation frequencies 
and, for the usual elastic coupling, we consider fermion and phonon environments showing 
thal the former involves a much more complex dynamics with a non-exponential time 
decay. Focusing upon the exponential pan of the decay, we find that for both classes of 
reservoirs the first two non-Markovian corrections have well defined signs that increase 
the relaxation frequencies. 

1. Introduction 

The time evolution of damped quantum systems has been investigated with renewed 
interest in recent years. Among the best known approaches in the literature one may 
find the quantum Langevin equation [ l ,  21 arising from the Heisenberg picture, the 
master equation for the reduced density operator of the damped system [3-5], the 
formulation in terms of functional integral techniques (path integrals) [6,7] and the 
quantum Fokker-Planck equation for the Glauber-Sudarshan quasiprobability distri- 
bution function [8,9]. Regarding this latter approach, we have recently examined a 
different quantum Fokker-Planck equation fulfilled by the Wigner distribution function 
which avoids the well known drawbacks introduced by the singularities of Glauber's 
P-function [lo]. Our investigation is concerned with the time evolution of a quantal 
harmonic mode immersed in a heat bath with which it interacts through a linear 
weak-coupling device. 

In this configuration, we distinguish two very different kinds of memory effects. 
On the one hand, ergodicity causes the loss of memory of the initial conditions through 
a particular process: the system progressively forgets the highest energy moments of 
the initial distribution [5]. The second memory effect stems from the well known 
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non-Markovian nature of the reduced equations of motion and, in this respect, we 
have derived a rule that relates the non-Markovian relaxation time to the Markovian 
one in a regime of highly inelastic collisions [3]. 

Along these lines, two main purposes orient the present paper: first, the study of 
the relaxation process of the Wigner distribution function for arbitrary environments 
and initial conditions and, secondly, the investigation of the ahove-mentioned memory 
effects. In order to carry out this programme, in section 2 we summarize the major 
results concerning the phase space mapping of the Markovian master equation [SI 
and its associated phonon dynamics. In section 3 we analyse a non-Markovian regime 
of highly inelastic collisions, for which we extend previous findings concerning the 
relation between Markovian and non-Markovian relaxation frequencies. The usual 
elastic non-Markovian regime is considered in section 4 where, assuming given regular. 
ity properties of the density of states in the thermodynamic limit, we calculate the 
coefficients of the analytic expansion of the Laplace-transformed memory kernel around 
the origin. This result is applied in section 5 to two specific heat reservoirs, an oscillator 
bath and a fermion fluid. Finally, in section 6 some concluding remarks are given. 

E S Herndndez and H M Cataldo 

2. The generalized Fokker-Planck equation and its solution 

In [lo] we have shown that the Wigner image of the master equation describing the 
relaxation of a quantal harmonic oscillator linearly coupled to a heat reservoir is 

d H  
(H, f) = u (  p+(kT,+ H )  -+ a P  k T , H T  

ai d H  
where p ( H ,  f) is the semiclassical density, H =p2/2M + + M n 2 q 2  is the semiclassical 
energy variable in phase space, the frequency parameter v is the difference between 
the downwards and upwards transition rates in the master equation: 

U =  w+- w_ 

is the Boltzmann factor for an equilibrated oscillator with energy quantum fin in a 
reservoir at an effective temperature [4] Teff. The Wigner temperature T, is the mean 
energy of the quantal oscillator at thermal equilibrium: 

fin 1+p  
2 1 - p  

kT,=-- 

fin fin 
- coth- 

2 2kT,,' 
-_ 

The general solution of equation (2.1) reads [lo] 

%exp(-ZiL($)] 
where the expansion coefficients a,,, are obtained from initial conditions, p d h )  is the 
equilibrium density, 

(2.6) 



Relaxation dynamics of the Wigner distribution function 4111 

the function L, (x )  is the mth Laguerre polynomial and we have chosen the 
adimensional variables 6 = kT,/iiCl, h = H/hCl  and T =  W,.t. 

Let us now consider the nth moment of the energy-adimensionalized Fokker-Planck 
equation: 

M . ( t ) =  d h h " p ( h , t ) .  (2.7) lo': 
A simple calculation leads to the coupled moment equations: 

ni . ( t )= u ( - n M " ( r ) + n 2 6 M " ~ , ( t ) ) .  (2.8) 

The analysis of the spectrum of this vector equation immediately yields the eigenvalues 
A,, = -kv, k = 0 ,  1,. . . , and the eigenvectors I * ( ' )  with components 

l o  n < k  

In  other words, the nth moment evolves according to the n-lowest eigenfrequencies 
of the Fokker-Planck equation (2.1). This point is in agreement with a previous result 
obtained in the quantum case [ 5 ]  and reflects the fact that Wignerization is a linear 
procedure. One can further verify that the solutions of equation (2.8) possess the 
asymptotic limit 

M,,(m) = n! 6" (2.10) 

which corresponds to the classical canonical distribution (2.6), with 6 being just the 
asymptotic value of the first moment: 

(2.11) e=;+- P 
1-0' 

3. The non-Markovian semiclassical equation 

The non-Markovian version of the generalized Fokker-Planck equation (2.1), in terms 
of the adimensional energy variable h and energy parameter 6 ,  is [ lo]  

= 1,' d r  v ( r )  ( p + (6  + h )  
Jt 

In this equation, both the frequency density U and the Wigner temperature kT, = 6hCl 
acquire some time dependence that should be traced to the variations of the microscopic 
transition rates W,(T) [lo]. As usual, the convolution in (3.1) decouples by means of 
the Laplace transformation, 

p ( h , A ) = j o  dfe-*'p(h,t) (3.2) 
m 

and we find the transformed evolution equation, 
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In equation (3.3), the functions U ( A )  and 6 ( A )  are 

E S Herndndez and H M Cataldo 

u ( A ) =  W+(A)- W_(A) 

W+(A)(l-P(A)) (3.4a) 

(3.46) 

with W,(A) the Laplace transforms of the time-dependent rates W*(T). 
It has been shown in [ I O ]  that a general solution for (3.3) exists and is of the form 

(3.5) 

where the expansion coefficients a, (equation (2.5)) acquire a A dependence arising 
from the function 6 ( A ) .  The non-Markovian eigenfrequencies are then the roots of 
the nonlinear equation [4,5] 

A,,, = -mu(A,). (3.6) 

The determination of these roots, which might be expected to be complex numbers, 
in general, demands a model for the coupling that drives the oscillator towards thermal 
equilibrium. A definite model plus some assumptions regarding the characteristics of 
the interaction-i.e. weak coupling-yield detailed expressions for the transition rates 
W+(A). In previous works [3-5,101, we have considered an equilibrated fermionic heat 
bath and analysed the nature of the non-Markovian eigenfrequencies in the highly 
inelastic limit. The Markovian approximation appears to be valid in the weakly coupled, 
overdamped situation. In particular, in [3] we have derived a rule that permits one to 
relate the lifetime of an excitation in the non-Markovian regime, namely the smallest 
root A , ,  to the Markovian counterpart We are now interested in looking for a 
generalization of the above rule to every eigenfrequency (3.6) whose Markovian 
counterpart is 

, i ‘ ,“’=-mv(o). (3.7) 

Assuming that both A. = 0 and A, belong to the regularity domain of v ( A )  in the 

u(A, )=  u ( O ) + u ’ ( O ) A , f ~ u ” ( 0 ) A ~ + .  . . (3.8) 

complex plane [ l l ,  121, we may write 

and then a sufficient condition for the Markovian rule (3.7) to hold is 

\ u ( ~ ) ( O ) A A I < <  v ( 0 )  (3.9) 

for all positive integers L. The weakest non-Markovian regime arises if second- and 
higher-order terms in expansion (3.8) are neglected, yielding in this case the approxi- 
mation 

(3.10) 
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On the other hand, it has been shown [lo] that in the weak-coupling limit that 
permits a golden-rule description of the scattering rates, the complex transition prob- 
abilities W,(A) are of the form 

(3.11) 

In this expression, y is an inelasticity spread related to the inverse correlation time, 
y = T& up is the transition energy for the event P (which is in turn labelled by a set 
of r quantum numbers, r a 1) and Wz are amplitudes that depend on the squared 
interaction strength and on the equilibrium distribution of the heat reservoir. We then 
have, 

(3.12) 

with W p =  W y -  W!>O. 
A reasonable estimate for the appearance of the function v(A) can be given as 

follows. On the one hand, assuming a large heat bath a thermodynamic limit holds 
for any function a?: 

; a p -  a(p)g(p)  d'p (3.13) 

where d'p is the r-dimensional differential label denoting the scattering process p and 
g (p) is the density of states in the Hilbert space of the reservoir channels. We then 
express equation (3.12) as 

(3.14) 

with x =  y+h.  On the other hand, we may generally find a variable change from the 
r p-labels to a set having w (p) as a member. One can then perform the uninteresting 
integrals and obtain, 

do F(o) 
v ( x )  = x (3.15) 

Usually, conservation laws lead to a peaked function F(o) around the origin (cf 
equations (4.6) and (4.7) of [4]); therefore, the Breit-Wigner filter in equation (3.15) 
may be approximated, restricting the integration domain to an interval [-fix, p x ] ,  f i  
being a number close to unity. Accordingly, 

u ( x ) = -  d o F ( w )  (3.16) 
x r -r 

and, as a consequence, 

(3.17a) 

(3.176) 
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Let us truncate expansion (3.8) up to second order and replace into the definition (3.6) 
of the mth roots. One easily finds a second-degree equation: 

(A,/y)2(A\',M1+2m@ - my@') - ( A m / y ) (  y + A',M1+2m@)+ ATi = 0 (3.19) 

with @ =  Fcvcn(y). Now, one knows that the mth lifetime is the smallest of the two 
roots [4,5, lo]; i t  can be then seen that, for those values of m for which IAJ,  lA',M1l 
are much smaller than y, the smallest solution of equation (3.19) can be approximated 

E S Hernindez and H M Calaldo 

by 

(3.20) 

which also arises from equations (3.10) and (3.17a). 
This expression generalizes that obtained in [3] for the so-called lifetime of the 

quantal harmonic excitation, namely the smallest A ,  root. Notice, however, that it is 
not valid for sufficiently large m, which is not important, since roots A, dose to y 
represent microscopic lifetimes and are irrelevant to any study of macroscopic 
relaxation. 

4. The non-Markovian regime under an elastic coupling 

In the preceding section we have focused upon the highly inelastic limit occurring 
when the non-Markovian relaxation frequencies are much smaller than the inelasticity 
spread y. One may call such a regime a 'weakly non-Markovian' one, since the relaxation 
spectrum is close to that given by the Markovian prescription. We are now attempting 
to study an analogous weakly non-Markovian regime in the case of a vanishing 
inelasticity y = 0. Firstly, we may write equation (3.15) for y = 0 as follows: 

d o F ( w )  1 dwF(w)  
2 _m A + i w  +-I 2 -m A-io 

v (A)=-  'I 
m 

(4.1) 
. dwFeve.(w) 

w - i A  

with F,,,(x) given in equation (3.18). In order to analyse the above expression it is 
convenient to change variables to 

z = i A  (4.2) 

leading to 

(4.3) 

Thus the RHS of equation (4.3) is just of the form of a Cauchy integral [13,14] which 
generally gives rise to a regular function p(z)  in the upper half-plane that approaches 
zero for z Y m. 

This behaviour can be understood since v(A) is a Laplace transform of the type 
(3.2), i.e. defined for Re A > 0. However, the non-Markovian frequencies arising as the 
roots of equation (3.6) must be located in the left half-plane and thus one has to 
compute the analytic continuation of equation (4.3) in the lower half-plane. This 
problem may be easily solved if the function Feven(w),  which is initially defined on 
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the real axis, can be analytically extended beyond that axis, simply replacing the real 
variable w by a complex z [14]. Then assuming Feven(z) to be a regular function in a 
circle of radius R centred at the origin z = 0, the analytic continuation of equation 
(4.3) reads 111-151 

d z ) =  -v( -z)+ FevAz)  I m z < 0  (4.4a) 

(4.46) 

where the function 'p on the RHS of equation (4.4a) is given by expression (4.3) and 
the symbol 9 in equation (4.46) stands for the Cauchy principal part. 

We must remark that the analytic continuation formulae (4.4) are valid in the 
regularity domain of Feven(z), i.e. in a half-circle of radius R around the origin in the 
lower half-plane. In the border of such a half-circle there should be at least one 
singularity of Fevem(z) and in this respect one may distinguish two main cases: 

(i) singularities located on the real axis [ll ,  121. They generally arise from cut-off 
frequencies of the function F c v e n ( w )  like those appearing in a Debye-like density in 
a phonon reservoir. In addition, it can be shown [13] that these points are, in general, 
branching points of the Cauchy integrals in equations (4.3) and (4.4). 

(ii) If Fe"&) is regular along the whole real axis, it must necessarily possess 
singularities outside this axis, otherwise the function q ( z )  defined by equations (4.3) 
and (4.4) would identically vanish [14]. 

are correlation, i.e. 
microscopic, frequencies and, therefore, the inverse of the radius R usually gives the 
characteristic correlation lifetime. 

The coefficients of the series expansion (3.8) can be explicitly written in the current 
weak-coupling regime. In fact, assuming a weight function F(x)  differentiable along 
the whole real axis, a straightforward calculation yields the nth derivative of ~ ( z )  in 
z = 0 [ 151, and thus we have 

(-)""TFLZ~~(O) = (-)"/2?rF'"'(0) n even (4.5a) 

( < - ) ( n - l ) / 2 n !  jl dw F , ( w )  n odd (4.5b) 

In any case one finds [ l l ,  121 that the singularities of 

u'"'(0) = 

where we have defined the set of functions 

. 
for positive odd n. 

One can verify that the above functions possess the same spectrum of singularities 
as Ftven(z). Then, assuming that such a spectrum consists only of the poles zk and that 
Feven(z) / z  approaches zero for z Y 00, the integral (4.5b) yields 

In the next section we will apply the above formalism to the case of a well known 
system, the phonon reservoir, and to a lesser known coupling, the fermion heat bath. 
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5. Elastic coupling to specific reservoirs 

5.1. Phonon reservoir 

Let us assume that the harmonic oscillator is linearly coupled to a phonon reservoir 
through the Hamiltonian 

(5.1) 

where a', a', represent phonon creation operators of the central oscillator and mode 
P respectively and HC denotes the Hermitian conjugate terms. Such a Hamiltonian 
represents the most general linear coupling and some usual particular choices of the 
matrix elements ra+ are: 

(i) T,+ = re-, representing an interaction of the coordinate-coordinate type 
L I . 4  1% "1, 

(ii) r,_ = 0, representing the so-called rotating-wave approximation [ l ,  21. 
A straightforward calculation [SI leads to the Laplace-transformed transition rates: 

E S H e r n h d e z  a n d  H M Cataldo 

H i . , = x  r ,+a+a ,  +r.-a T t  ( I , f H C  

01 

r4 I )  . L  1 1 7 .  

where n, symboiizes the mean number o i  phonons o i  irequency 0,. We notice that, 
in any case, v ( A ) =  W+(A)- W_(h)  is independent of n,, i.e. of the temperature; for 
simplicity, we will restrict ourselves to a coordinate-coordinate interaction, taking 
re+=ra-= r,. Thus, turning to the continuum limit (cf equation (3.13)), 

m r2 I$-[ 0 f ( w ) d w  (5.3) 

it is easy to find the following expression for the function p(z) = v(-- i2) /2~ in the 
upper half-plane: 

d o  
X-. 

W - 2  
(5.4) 

At this point we may observe that as w approaches zero, the weight function f(w) 
must vanish at least as w itself, in order to keep finite the RHS of equation (5.2). Thus 
the condition f(0)  = 0 makes room for a possible analytic extension off(w) for w < O  
by means of an odd parity ruie, which wouid carry equation (5.4) into equaiion (4.3) 
with 

FC"AW) =f(Q+ w ) + f ( n  - a ) .  (5.5) 

In order to get more explicit results we will focus upon the weight function 
[I, 8, 16, 171 

with 7 representing the phonon bandwidth of the reservoir excitations that may couple 
to the oscillator and with A being an adimensional average strength of such a coupling. 
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An analysis of the function ( 5 . 5 )  shows that it possesses four single poles with real 
part *a and imaginary part * r )  which yield a convergence radius, 

R = v @ q  (5.7) 

for the series expansion (3.8). The first three coefficients of this expansion can be 
computed by means of equations ( 4 5 2 )  and (4 .5~ ) .  giving 

u ( 0 )  =2/\11$/.R2 (5.Ra) 

~ ‘ ( 0 )  = - 4 A 0 7 ’ / R 4  (5 .8b)  

u”(0)  = l 2 A n r ) ’ ( 7 ’ - ~ ’ / 3 ) / R 6 .  ( 5 . 8 ~ )  

Thus, assuming that the oscillator frequency R is smaller than the phonon bandwidth 
r) [ 1, 171 one may realize that the general term of the expansion (3.8) is approximately 
-: L.. 
8 1 Y F 1 L  “y 

u‘”’(0)A: -An(A , /R)” .  (5 .9 )  

According to equation (5 .9 ) ,  we see that the Markovian limit (3.9) holds if lA,,l<< R, 
leading us to  identify the convergence radius R as the characteristic correlation 
frequency as expected. 

5.2. Fermion reservoir 

Let us now consider the coupling to a fermion heat bath through the Hamiltonian [3-51 

Hjnt = A,,a’b:b, + HC (5.10) 

... Le-- L t  I L  \ -a..-a”--.” .La &-.%-..:-.. ---- d-.. ,A^-* +:-.., --” ^ F  rl -” ^:^^I^  
W I I C I C  U#. ,Ue, 1 = ‘ y L c J c L “ ”  L U G  l F L l L l l U l l  CIC(ILIUII  ,“rJlr”c,rur‘, up,cra,uL “1 Lllci aLrr8lG- 

particle state Ip) (la)) and Am,, symbolizes the associated matrix element. 
T h e  Laplace-transformed transition rates corresponding to the above Hamiltonian 

have been calculated in [ 3 , 4 ] ,  and read 

“ P  

(5.11) 

where pa = [ 1 + exp(a, - &,)/kT]-’  denotes the Fermi occupation number for a state 
/ A )  of energy we+ is the difference ( E ,  - E,,)/ f i  and g is a degeneracy factor related 
to internal fermion coordinates. Assuming a translationally invariant interaction, turn. 
ing to the continuum limit according to  the well known prescription 

(L’ denotes the volume of the fermion reservoir) and following the steps discussed in 
[ 4 ] ,  we can show that u ( A )  takes the form of equation (3.15) with 

F ( w )  = 4?r(gA)’( L/h) ’ (2m’&, /3f i2) ’ ’ ’kT/hn 

/ 1 + e x p { ( ~ ~ / k T ) ( 1 / 3 ~ ’ ) [ 3 ~ ’ - ( ~  +Q-I2 l } \  
(5.13) \1 +eXP((E~/kT)(1/3n~)[3n’-(o +n+)2111 x in 

where m is the fermion mass, A ’ s  lAJ2 and R =  c,q, c, being the sound velocity and 
hq the phonon momentum. We have defined the shifted frequencies ( h a <  sF), 

n , = n ( l * 3 h n / 4 E F )  (5.14) 
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and have assumed low temperatures, so that both the fermion chemical potential eF( T )  
and the sound velocity are well approximated by their zero-temperature values. Under 
this condition we have c,= ( 2 ~ , / 3 m ) ’ / ~  [181. 

According to equation (4.4a), the singularities of ~ ( z )  are those of Feycn(z) in the 
lower half-plane; from equations (3.18) and (5.13) we find that they group into eight 
sets of branch points given by 

w =a{( -)“&1-( -)’i(2n+ l )rkT/EF+( - ) < & / C l }  

n=O,1,2 , . . .  ( ? , l = O o r l )  

E S Hernandez and H M Calaldo 

(5.15) 

The branch points of the right (left) half-plane lie along four curves parallel t o w  
( - m j ,  u>O, that is, they are symmetrically located with respect to the 
imaginary axis. Issuing from each branch point, the simplest choice for a cut ending 
at Im z = -m is the curve to which the given point belongs (figure 1). 

The complexity of the above singularity spectrum is remarkable compared to the 
phonon reservoir, which exhibits only two temperature-independent poles. In addition, 
from equation (3.5) we realize that p ( h ,  A = -iz) displays the same singularity spectrum 
(apart from the poles arising from equation (3 .6 ) ) ;  accordingly, non-exponential 
time-decaying terms are expected to contribute to p(k, 1 )  [12, 15, 171. 

In the current low temperature limit: 
(i) the eight curves mentioned above are indeed well defined ones, since the distance 

(ii) the convergence radius R is well approximated by JfCl -Cl , ,  i.e. it is of 

(iii) for z within the convergence radius (121 < C l )  we have from equation (5.13) a 

Fcven(z) = ~ T ( ~ A ) ~ ( L /  h)’(2m3eF/3h2)1’2. (5.16) 

This immediately leads to an odd-parity rule for the analytic continuation (4.40) 

U ( - A )  =2u(O) - u ( A )  ( l A l <  R ) .  (5.17) 

between branch points is of order kT/e,; 

order Cl;  

r-independent Feven(z): 

of ~ ( z ) ,  and, accordingly, to 

Figure 1. Schematic plot of the four curves parallel to J)o ( U  >O). The axes units 
are R and we have set hR/e ,=0 .339  as in 141. 
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In [ 5 ]  we have analysed the function u ( A )  for A > 0 and have found that it is practically 
temperature independent (for Os kT/E,sd).  Thus, it is of interest to consider the case 
T=O for which a calculation similar to that leading to equation (3.10) of [4] yields, 
in the present case, 

x[tan-'( an-a- A )+tan- '(  JSn+n- A )] 

- (A2+3n2-n:) [ tan-' (43 "-"+j + tan- l  (J3 j] 

The only singularities of the above function in the z-plane are eight branch points 
located on  the real axis and given by equation (5.15) with T=O; in fact, as k T / e ,  
goes to zero, the branch points of each curve merge to a single cut as illustrated in 
figure 1. 

The first two coefficients of expansion (3.8) computed from equation (5.18) give 

v ( 0 )  = 4 7 i 2 ( g A ) 2 ( L / h ) 3 ( 2 m 3 ~ ~ / 3 f i 2 ) " 2  (5.19a) 

and 

which is a negative quantity since n+> a-. The second derivative vanishes, in agree- 
ment with equation (4.5a) for n = 2  under approximation (5.16); notice that the exact 
expression (5.13) yields the positive result 

which vanishes in the limit kf/eF+O. 
A general situation of higher temperature requires a numerical task which we leave 

for a future work. However, it is simple and instructive to analyse the high-temperature 
limit fin < eF( T = 0) << kT at which the Fermi occupation numbers in equation (5.1 1) 
become Maxwellian distributions and the sound velocity is given by c, = (ykT/m)"', 
( y  = C, /C , ) .  In such a case, it is easy to find 

(5.20) 
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where N denotes the number of particles. The above function is regular in the whole 
lower half-plane except at Im w = -00; this can he understood from the behaviour of 
equation (5.15) for higher temperatures. Thus, in this temperature limit the convergence 
radius R is indeed infinite. This does not imply a vanishing correlation lifetime; in 
fact, one finds 

E S Hernhndez and H M Caraldo 

fia 
u ( T ) =  w+(T)- W_(T)-e+(*lr)”2lsin(aT) sin(---nr) J y k T  , (5.21) 

i.e. a lifetime of order a-‘. Furthermore, for w along the real axis we can replace the 
hyperbolic sines in equation (5.20) by their arguments and then, for real w,  

From the above expression and equation (4.5) it is easy to extract the coefficients of 
expansion (3.8): 

N 
hkT ~ ( O ) = ( g A ) ~ - ( 2 r r y ) ” ~ e - ~ ’ ~  (5.23a) 

u ( 0 )  ,-- dx 
u’(O)=- [e-”2’z(cosh yx -x sinh yx) - 11 < O  (5 .236)  JL7 

u”(O)=- 2) y ( 3 - y ) Z O  (5 .23~)  

where the inequalities arise from the ideal gas relationship I <  y<S. 

6. Concluding remarks 

In this work we have investigated the non-Markovian time evolution of the semiclassical 

Markovian case. To this aim we have examined first a highly inelastic limit, finding a 
generalization of the rule that relates Markovian and non-Markovian relaxation 
frequencies. 

We have first illustrated our formalism for the usual elastic coupling in a well known 
situation, namely that of a harmonic oscillator heat bath. Next we investigated a 
different and less explored environment, that is: a fermion reservoir. We have found 
that this system exhibits a much more complex dynamics, in particular the singularity 
spectrum of the Laplace-transformed memory kernel is strongly dependent upon 
temperature and the nature of the singularities leads to terms of non-exponential time 
decay in the evolution of the damped oscillator. We have focused our investigation 
upon the exponential part of the decay, exploring the poles of the Laplace-transformed 
Wigner distribution function and explicit results have been derived for both limits of 
temperature with emphasis in the weak non-Markovian regime represented by the first- 
and second-order corrections to the Markovian relaxation frequencies. Regarding this 
point, it is very remarkable that for both classes of reservoirs the non-Markovian 
corrections have well defined signs that increase the relaxation frequencies, as is 
schematically illustrated in figure 2. This feature may then indicate a possible generaliz- 

distribution for a harmonic oscillator !inear!y coup!ed to a heat bath compared to the 
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Markov: "(A) = "(0) 

First order: " ( A )  = u(O)+ d ( 0 ) n  

Second order: "(A) = u(O)+ u'(0)A + d'(0)A2/2 

(where v(O)>O,  u ' (O)cO,  u"(O)>o) 

Figure2 Graphic solution ofequation (3.6) for Markov, first- andsecond-arderapproxima- 
lions. 

ation of the well known 'universality' of the Markovian weak-coupling regime [16,17]. 
Finally, the effect of non-exponential contributions on the relaxation process remains 
to be discussed. We have seen that such terms arise from the branch points occurring 
on the frequency plane, thus their time evolution should be governed by the lowest 
branch point, i.e. the convergence radius R. On the other hand, in the weak non- 
Markovian regime we have focused upon the lowest pole A ,  which governs the 
exponential behaviour must fulfil IA,l<< R (the Markovian limit corresponds to 

non-exponential terms to negligible values ('long time tails'), thus affecting only the 
small- and large-t regions. Therefore we conclude that the exponential decay law 
should be valid over a wide intermediate-time region as is well known for unstable 
quantum systems [19]. 

R a m )  Th;c ranrr.+;nn nf t:mpcnalnr - h - , . l A  ..-*A....a --..:A ,- --.. e-ma-na *f -. , --,. ".,y...Y.'"" U. L..I.-I..Y.CI DII"".Y p""""Lc a lap"" L"""C1&C"CC Y L  

Acknowledgments 

One of us (HMC) is grateful for the kind hospitality of the Departamento de Fisica 
de Particulas e Electr6nica of the Universidade de Santiago de Compostela (Spain) 
where the final stage of this work was carried out. He also thanks the Consejo Nacional 

Espatiola de Cooperaci6n lnternacional (AECI) of Spain for the award of fellowships. 
This work was partially financed by grants PID 97/88 from CONICET and EX046 
from Universidad de Buenos Aires, Argentina. 

A- T-..--+:nm-:--ae P:n-t:f-..l .. TA,,a:n-c / P C \ L T T C = C T \  - F  A--e-+:..n n-A +hn A--..,.:- 
"C , , , * C " , l & a r r u r r r J  Llrlll.llr'xa J I c C I I I c a D  \.-",*Irk 1, "1 r,1&C",".LL LLI.Y L U G  n&C"c,a 

References 

[ I ]  Lindenberg K and West B J 1984 Phyr. Rev. A 30 568 
[2] Ford G W, Lewis J T and OConnell R F 1988 Phyr. Reo. A 37 4419 
[3] Hernandez E S and Cataldo H M 1987 Phys. Lerr. l 2 4 A  489 
[4] Cataldo H M and Herdndez  E S 1988 J.  Slol. Phyr. 50 383 



4122 E S Herndndez and H M Cataldo 

[ 5 ]  Cataldo H M and Hernandez E S 1988 J. Stol. Phys. 53 673 
[6] Caldeira A 0 and Leggett A 1 1983 Ann. Phys., NY 149 374 
171 Schramm P and Grabert H 1987 J. Slol. Phys. 49 767 

[8] Haake F 1969 2. Phyr. 223 364 
[9] Lauisell W H 1973 Q u m "  Slorislical Ploperlies oJRodiation (New York: Wiley) 

Graben H, Schramm P and lngold G L 1988 Phys. Rep. IMI 115 

[lo] HemPndez E S and Cataldo H M 1989 Phys. Rev. A 39 2034 
Cataldo H M 1989 Nonlinear Phenomena in Complex Systemr ed A N Proto (Amsterdam: Nonh. 

Holland) p 221 
[ I l l  Cataldo H M 1989 PhD 7 k s i s  University of Buenos Aires (unpublished) 
[I21 Cataldo H M 1990 Physieo 165A 249 
[ 131 Muskhelishvili N I 1953 Singular Integro1 Eqlrolions (Groningen: Nordhoff) 
[I41 Balescu R 1963 Slatistical Mechanics OJ Charged Portides (London: Wiley) 
[IS] Cataldo H M 1990 Phys. Lett. 148A 246 
[I61 Ullersma P 1966 Physiea 32 27 
[17] Haake F and Reibold R 1985 Phys. Re". A 32 2462 
[18] Pines D and Nazieres P 1966 7 h e  nteory oJQunnrum Liquids YOI I (New York: Benjamin) 
[I91 Chi" C B, Misra B and Sudarshan E C G 1982 Phys. Leri. 117B 34 


